NASA L'SPACE PDR - Preliminary Design Review The DORA Explorer Mission

Team 28

Alicia Chun, Karolina Czarkowska, Nat Pujet, Natalie Orrantia, Eduard Trevino, Madeline Ha, Vinhny Nguyen, Drew Mayberry, Josiah Romero, Syed Aariz, Swetha Prakash, Vivaan Rupani, Eddie Jones, and Lin-Aragon Lira

January 20, 2025

Contents

1	Mis	sion O	erview	10
	1.1	Missio	Statement	10
	1.2	Scienc	Traceability Matrix	10
	1.3	Summ	ry of Mission Location	15
	1.4	Missio	Requirements	20
	1.5	Conce	t of Operations	22
	1.6	Vehicl	Design Summary	28
	1.7	Scienc	Instrument Summary	29
	1.8	Progra	nmatic Summary	32
		1.8.1	Team Introduction	32
		1.8.2	Team Management Overview	35
		1.8.3	Major Milestones Schedule	38
		1.8.4	Budget Overview	39
2	Ove	rall Ve	nicle and System Design	40
	2.1	Space	aft Overview	40
			2.1.0.1 Top Level Subsystem Requirements	40
			2.1.0.2 Joint Summary of Vehicle Design	40
			2.1.0.3 BOOTS Full Assembly CAD	41
			2.1.0.4 DORA Full Assembly CAD	41
			2.1.0.5 Summarizing Table for All Subsystems Across Both Rovers	41
		2.1.1	Mechanical Subsystem Overview	42
			2.1.1.1 Mechanical Subsystem Requirements	45
			2.1.1.2 Mechanical Sub-Assembly Overview	48
			2.1.1.3 Mechanical Subsystem Recovery and Redundancy Plans	53
			2.1.1.4 Mechanical Subsystem Manufacturing and Procurement Plans	54
			2.1.1.5 Mechanical Subsystem Verification Plans	56
		2.1.2	Power Subsystem Overview	59
			2.1.2.1 Power Subsystem Requirements	61
			2.1.2.2 Power Sub-Assembly Overview	62 CF
			2.1.2.3 Power Subsystem Recovery and Redundancy Plans	65 66
			2.1.2.4 Power Subsystem Manufacturing and Procurement Plans	60 69
		919	CDL Subarator Oromian	00 71
		2.1.3	2.1.3.1 CDH Subgustem Bequirements	11 73
			2.1.3.1 CDH Sub-System Requirements	73
			2.1.3.2 CDH Sub-Assembly Overview	79
			2.1.3.3 CDH Subsystem Manufacturing and Procurement Plans	80
			2.1.3.5 CDH Subsystem Verification Plans	82
		2.1.4	Thermal Control Subsystem Overview	83
			2.1.4.1 Thermal Control Subsystem Requirements	86
			2.1.4.2 Thermal Control Sub-Assembly Overview	87
			2.1.4.3 Thermal Control Subsystem Recovery and Redundancy Plans	89
			2.1.4.4 Thermal Control Subsystem Manufacturing and Procurement Plans	90
			2.1.4.5 Thermal Control Subsystem Verification Plans	92
		2.1.5	Payload Subsection Overview	93
			2.1.5.1 Science Instrumentation Requirements	97
			2.1.5.2 Payload Subsystem Recovery and Redundancy Plans	99
			2.1.5.3 Payload Subsystem Manufacturing and Procurement Plans	102
			2.1.5.4 Payload Subsystem Verification Plans	105
	2.2	Interfa	e Control	108
		2.2.1	BOOTS Interface	108
			2.2.1.1 N ² Diagram	108
			2.2.1.2 BOOTS System Diagram	109
		2.2.2	DORA Interface	112

	2.2.2.1N ² Diagram2.2.2.2DORA System Diagram	. 112 . 112		
3	Science Mission Plan3.1Science Objectives3.2Experimental Logic, Approach, and Method of Investigation3.3Payload Success Criteria3.4Testing and Calibration Measurements3.5Precision and Accuracy of Instrumentation3.6Expected Data and Analysis	114 . 114 . 117 . 118 . 123 . 125 . 128		
4	Mission Risk Management 4.1 Safety and Hazard Overview 4.1.1 Risk Analysis 4.1.2 Failure Mode and Effect Analysis (FMEA) 4.1.3 Personnel Hazards and Midifations	131 . 131 . 133 . 136 . 140		
5	Activity Plan 5.1 Project Management Approach 5.2 Mission Schedule 5.2.1 Schedule Basis of Estimate 5.2.2 Mission Schedule 5.3 Budget 5.3.1 Budget Basis of Estimate	146 . 146 . 149 . 149 . 151 . 155 . 155		
	5.3.2 Total Mission Cost 5.3.3 Personnel Budget 5.3.4 Travel Budget 5.3.5 Outreach Budget 5.3.6 Direct Costs 5.4 Scope Management 5.4.1 Change Control Management 5.4.2 Scope Control Management	. 156 . 157 . 160 . 160 . 162 . 168 . 168 . 168		
6	Conclusion 6.1 Bibliography	. 170 171 . 173		
Aı	ppendices	180		
A	Mechanical Subsystem Cost Breakdown	180		
в	Power Subsystem Cost Breakdown	180		
С	Thermal Control Subsystem Cost Breakdown	181		
D	CDH Subsystem Cost Breakdown	181		
E	E GNC Subsystem Cost Breakdown 182			
F	Payload Subsystem Cost Breakdown 182			
G	Change Request Form 183			

List of Tables

1a	Science Traceability Matrix, Part 1	13
1b	Science Traceability Matrix, Part 2	14
2	Requirements Key	20
3	Table of Top level requirements, part 1	23
4	Table of Top level requirements, part 2	24
5a	Team Introduction, featuring Alicia Chun, Nat Pujet Karolina Czarkowska, and Natalie	
	Orrantia	32
$5\mathrm{b}$	Team Introduction, featuring Eduard Trevino, Madeline Ha, Vinhny Nguyen, Drew	
	Mayberry and Josiah Romero	33
5c	Team Introduction, featuring Vivaan Rupani, Swetha Prakash, Syed Aariz, Eddie Jones,	
	and Lin-Aragon Lira	34
6	Major Milestone and Major Task Chart	38
7	Budget Overview without MTCD and F&A	39
8	LSE Top Level Requirements	40
9	BOOTS Mechanical Engineering Specifications	45
10	DORA Mechanical Engineering Specifications	45
11a	Requirements Chart for Mechanical Engineering Subteam	47
11b	Requirements Chart for Mechanical Engineering Subteam Continued	48
12	DORA Mechanical subsystem Recovery Procedures	53
13	BOOTS Mechanical subsystem Recovery Procedures	54
14	BOOTS Mechanical subsystem Recovery Procedures	58
15	BOOTS Power Engineering Specifications	59
16	DORA Power Engineering Specifications	59
17	Requirements Chart for Power Subsystem	61
18a	Power Verification Plans, Part A	68
18b	Power Verification Plans, Part B	69
18c	Power Verification Plans, Part C	70
19	CDH Specifications Chart	72
20	CDH Subsystem Requirements Chart	73
21	CDH Verification Plans	82
22	BOOTS thermal subassembly mass, volume, and max power draw	83
23	DORA thermal subassembly mass, volume, and max power draw	83
24	Requirements Chart for Thermal Control	86
25	Active Heating Component Trade Study	87
26	Insulating Surface Finish Trade Study	88
27	Passive Cooling Trade Study	88
28	Radiating Surface Finish Trade Study	89
29	Thermal risk likelihood, consequence, statement and status	90
30a	Thermal Control Subsystem Verification Plans	92
31a	Requirements Chart for Science Instrumentation, Part A	97
31b	Requirements Chart for Science Instrumentation, Part B	98
32a	Recovery and Redundancy Chart, Part 1	100
32b	Recovery and Redundancy Chart, Part 2	101
33	BOOTS Payload Specifications Chart	104
34	DORA Payload Specifications Chart	104
35a	Payload Verification Plans, Part A	105
35b	Payload Verification Plans, Part B	106
35C	Payload Verification Plans, Part C	107
30	Payload Success Criteria: Minimum Success, Optimum Success, Stretch Goal	122
31 20	NISK SUMMARY Part 1	130
38 20	Risk Summary Part 2	137
39 40	NISK Summary Ney	138
40	FMEA for the CDU subtore	139
41 49	FMEA for the Electrical Engineer subteam	141
44	TWEEA IOF THE ELECTRON ENGINEER SUBJEAU	144

43	FMEA for the Electrical Engineer subteam
44	FMEA for the Payload subteam
45	Major Milestones
46	Key Decision point Milestone for Phase C
47	Critical Design Review Milestone
48	Production Readiness Review
49	System Integration Review
50	Key Decision Point D
51	System Acceptance Review
52	Operational Readiness Review
53	Mission Readiness Review
54	Mission Launch
55	Key Decision Point E
56	Post-Launch Assessment Review
57	Critical Event Readiness Review
58	Decommissioning Review
59	Key Decision Point F
60	Archive Data
61	Total budget
62	Number of Personnel Per Fiscal Year
63	Personnel budget
64	Travel Budget
65	Outreach Budget
66	Direct Costs
67	CER breakdown of Mechanical Subsystem
68	CER breakdown of Power Subsystem
69	CER breakdown of Thermal Subsystem
70	CER breakdown of the CDH Subsystem
71	CER breakdown of the GNC Subsystem
72	CER breakdown of Payload Subsystem
73	Cost breakdown of manufacturing facility and testing facilities
74	Change control log
75	Cost breakdown of the Mechanical Subsystem
76	Cost breakdown of the Power Subsystem
77	Cost breakdown of the Thermal Control Subsystem
78	Cost breakdown of the CDH Subsystem
79	Cost breakdown of the GNC Subsystem
80	Cost breakdown of the Payload Subsystem

List of Figures

$\frac{1}{2}$	Images of Marius Hills Pit from different angles from Robinson et al. (2012) JMARS image showing the landing site with a 50 ft. radius and MHP	$11 \\ 15$
3	Plot of slope vs. distance along the path between the landing site and the pit	16
4	A photograph of MHP from JMARS. The pit is an average of 55m wide.	16
5	The location of Marius Hills on the lunar nearside within Oceanus Procellarum from	
	Henderson (2023).	17
6	Labeled image from JMARS of the region of Marius Hills directly around the pit, where	
	north is upwards. BOOTS will traverse along the bottom rille.	18
7	Labeled image from JMARS of the region of Marius Hills directly around the pit, where	
	north is upwards. BOOTS will traverse along the bottom rille.	18
8	The two other pits considered for this mission	19
9	Concept of Operations from Phase 1 to Phase 8.	26
10	Concept of Operations from Phase 9 to Phase 11	27^{-5}
11	DORA's Full Assembly CAD Design	$\frac{-}{28}$
12	BOOTS's Full Assembly CAD Design	29
13	MCA Team Primary Boles	35
14	MCA Team Secondary Roles	35
15	Full-team meeting PM sample slides	36
16	Graph of the Budget per Fiscal Vear	39
17	CAD Design and drawing of BOOTS	41
18	CAD Design and drawing of DOC15	42
10	CAD Design and drawing of BOOTS	42
20	CAD Design and drawing of DOP15	44
20	Pockar bogie suspension system visualization	44
21	The image above shows A pollo 15 using the folding mechanism to stow the rever's wheels	49
22	and chassis	50
93	Mars Spring Tire (MST) Prototypes	51
20	Dreakdown of the Nitical Alley and its two forms	51
24 25	Dreakdown of the Nithol Alloy and its two forms	01 60
20	ODU Subaratara Elem Chant	79
20	DDH Subsystem Flow Chart	12
21	DOD15 Heat Flow Maps for Hot and Cold Cases	04 04
20	N arwared abort for DOOTS	109
29	N squared chart for DOOTS.	100
ას 91	MatCam 7 mount on DOOTS	109
01 90	MastCall-2 Illouint on DOOTS.	110
32 99	Miniature GPR mount on BOO15	111
33 94	N squared chart for DORA.	112
34 95	System Diagram for DURA	113
30 90	LiDAR mount on BOO15.	114
30	Labeled image from JMARS of the region of Marius Hills directly around the pit, where	110
97	Transmission and the provided and the potton rule.	118
37	Transverse cross-section for Kille A from Greeley (1971).	119
38	The A-ray spectrum of calibration target on the inside of the protective doors of the	105
20	APAD	120
39	MAHLI'S Calibration Target	120
40	NASA/JPL-Caltech/ASU/MSSS example 2	128
41	NASA/JPL-Calteen/ASU/MSSS example 1	128
42	GPR sample data	130
43		130
44	APAS sample data	131
45	Example image from MAHLI of crystalline zinc ore as viewed from 2.5 cm working	100
10	distance (10 m/pixel). All images in this figure are from Edgett et al. (2012)	132
46	Example MAHLI image of regolith particles with 2 mm-diameter steel balls indicating	100
4-	scale. The particles are basalt, pumice, and plagioclase crystals	132
47	Simulated MAHLI view of a landscape.	132

48	Full Staff Personnel chart
49	Change Control Flow chart
50	Mission Patch
51	Budget change request form

List of Acronyms

MHP	Marius Hills Pit
BOOTS	Base Operational Observation Terrain Surveyor
DORA	Deep Operation Reconnaissance Agent
MAHLI	Mars Hand Lens Instrument
APXS	Alpha Particle X-Ray Spectrometer
GEF-LiDAR	GoldenEye 3D Flash LiDAR
RAD	Radiation Assessment Detector
CCT	Cernox [®] Cryogenic Thermometer
LET	Linear Energy Transfer
MGPR	Miniature Ground Penetrating Radar
NASA	National Aeronautics and Space Administration
DEM	Digital Elevation Model
TL	Team Lead
$_{\rm PM}$	Project Manager
PDR	Preliminary Design Report
MDR	Mission Definition Review
LE	Lead Engineer
CAD	Computer-aided design
DPMR	Deputy Project Manager of Resources
JPL	Jet Propulsion Laboratory
JSC	Johnson Space Center
SMA	Shape Memory Alloys
LaBC	Langley Research Center
AMPB	Advanced Materials and Processing Branch
MLI	Multilaver Insulation Blankets
TRL	Technology Readiness Level
MLI	United States Nanomaterial Research Inc
ISO	International Organization for Standardization
DoD	Department of Defense
IBM	International Business Machines Corporation
MCCET	Mission Concept Cost Estimate Tool
MSSS	Malin Space Science Systems
SwBI	Southwest Research Institute
CLPS	Commercial Lunar Payload Services
CCD	Charge-Coupled Device
NICM	NASA Instrument Cost Model
ASC	Advanced Scientific Concents Inc
FMEA	Failure Mode and Effect Analysis
PDR	Preliminary Design Report
LS	Landing Site
BIDM	Risk-Informed Decision Making
CBM	Critical Risk Management
LOTO	Lockout /Tagout
PPE	personal protective equipment
GSA	General Services Administration
CADRe	Cost Analysis Data Requirement
CEB	Cost Estimating Relationship
PDU	Power Distribution Unit
BCB	Battery Charge Regulator
BDR	Battery Discharge Regulator
SOC	System On Chin
GNC	Guidance Navigation and Control
RFA	Request for Action
	A dvisorios
CBF	Change Request Form
UTUT.	

CCB Change Control Board CCL Change Control Log

1 Mission Overview

1.1 Mission Statement

The DORA Explorer Mission presents a comprehensive plan to assess the suitability of the Marius Hills Pit (MHP) for long-term human habitation and advance understanding of the Moon's volcanic past and evolution. The mission will provide valuable data that will inform future manned missions to the Marius Hills by investigating the physical structure and integrity, thermal stability, radiation shielding capabilities, and the available in-situ resources of the MHP and potential lava tube structure beneath the pit. The DORA Explorer Mission will study MHP's exposed regolith flood basalt layersto obtain key insights into the Moon's volcanic history and surface processes, advancing understanding of lunar geology and the evolution of rocky bodies. Finally, the mission will explore along the edge of a nearby sinuous rille all the way to the rille source 25km away. It will analyze the morphology of the rille and image nearby sites of interest include craters and lava domes with the purpose of characterizing available surface science for future astronauts and studying lunar rilles.

The DORA Explorer Mission consists of two robotic probes: the rover BOOTS (Base Operational Observation Terrain Surveyor) and the pit explorer DORA (Deep Operation Reconnaissance Agent). BOOTS is the parent rover, whose task is to traverse the lunar surface to arrive at the pit, supply power and communication to DORA, and eventually survey the surface surroundings of the pit. The child craft, DORA, will descend into the pit cave to collect data on the internal structure of the pit and lava tube, measure radiation levels and temperatures, and identify in-situ resources within the lava tube. It will also measure and characterize exposed flood basalt and regolith layers on the side of the pit opening. Aboard DORA are the the Mars Hand Lens Instrument (MAHLI), the Alpha Particle X-Ray Spectrometer (APXS), GoldenEye 3D Flash LiDAR (GEF-LiDAR), Radiation Assessment Detector (RAD), and Cernox[®] Cryogenic Thermometer (CCT). BOOTS has two scientific instruments: Miniature Ground Penetrating Radar (MGPR) and MastCam-Z.

The DORA explorer mission is critical not only for determining the viability of future human habitation in lunar pit caves but also for expanding scientific knowledge of the Moon's geology and evolution to provide further context and background for the future scientific activities of lunar astronauts.

1.2 Science Traceability Matrix

Tables 32a and 32b, the Science Traceability Matrix, outlines the science goals, objectives, and measurements of this mission. The science goals of this mission stem from two customer-provided goals. The first goal, a goal of the Lunar Exploration Analysis Group, is to "provide safe and enduring habitation systems to protect individuals, equipment, and associated infrastructure" on the Moon.¹ The lunar environment poses numerous challenges to sustained human habitation, including stark temperature variations, high levels of radiation, and micrometeorites. Lunar pit caves could be ideal shelters for astronauts and act as long-term bases of operations.² The first goal of this mission is to characterize a pit cave's merit to provide safe and enduring habitation systems. Two objectives are derived from this goal. The first is to characterize the depth, terrain variation, ease of access, structural integrity, temperature, and radiation levels within lunar pits/caves to determine the viability of human habitation. Each of these parameters will be measured as indicators of merit for habitation. The second objective derived from the goal of providing enduring habitation systems is to characterize in-situ resources and materials inside selected lunar caves. In-situ resources are critical for NASA's plans of continuous lunar habitation, as using these resources eliminates dependence on Earth for resupplies. As part of this objective, the mission will analyze regolith composition and volatile distribution in the pit and on the surface to constrain where astronauts could obtain fuel and oxygen.

The second top-level goal of this mission, a goal from Origins, Worlds, and Life: A Decadal Strategy for Planetary Science, is to "develop precursor lunar robotic missions and define those scientific activities that astronauts will conduct on the Moon."³

¹ "The Lunar Exploration Analysis Group (LEAG)," Lunar Exploration Analysis Group (LEAG) (2024), https://www.lpi.usra.edu/leag/roadmap/.

²Tyler Hovarth, Paul O Hayne, and David A Paige, "Thermal and Illumination Environments of Lunar Pits and Caves: Models and Observations from the Diviner Lunar Radiometer Experiment," Geophysical Research Letters 49, no. 14 (2022), https://doi.org/10.1029/2022gl099710.

³National Academies of Sciences, Engineering, and Medicine, "Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023-2032," Washington, DC: The National Academies Press, (2023): 18,

Figure 1: Images of Marius Hills Pit from different angles from Robinson et al. (2012)

In accordance with this goal, the mission aims to learn more about the history and features of the lunar mare in order to provide more geologic context and information to better plan future human scientific activities. The first objective derived from this goal is thus to constrain the flood history, effusion rates, and composition of basaltic lava flows lunar mare. This objective aligns with the fifth priority science question of the Decadal Survey: "Q5. Solid-body interiors and surfaces. How do the interiors of solid bodies evolve, and how is this evolution recorded in a body's physical and chemical properties? How are solid surfaces shaped by subsurface, surface, and external processes?"⁴ Understanding the history of basaltic lava flows in lunar mare advances understanding of the transition from primary crust to secondary crust, which

is crucial for understanding how solid bodies and their surfaces evolve.⁵ The Moon's basaltic flow history is an ideal case study for investigations of secondary crust formation because of the Moon's lack of plate tectonics and relative geologic simplicity.

The timing and effusion rates of flood basalts on rocky bodies are still poorly understood. Understanding these factors is critical for interpreting volcanic features and constraining the secondary crust formation process. Additionally, flood basalt events are linked with large-scale climate deviations, so understanding how they work is of great importance on Earth.⁶ The exposed layers of flood basalt on the side of the favored mission destination, the Marius Hills Pit, provide an accessible way to study historical basaltic flows without having to drill far below the surface. The mission will sample these layers, seen in the lower two images of Figure 1,⁷ and collect data on chemical composition, mineralogy, and morphology in order to constrain flow regime, flow velocity, and average composition, the latter of which is critical for gaining a holistic view of the magma's origin.⁸ These data will advance understanding of the history and characteristics of flood basalts on the moon, thus providing information about the Moon's early and late volcanic history and how volcanism shapes rocky bodies.

The second science objective derived from the second science goal is to investigate the surroundings of the pit to determine ideal human scientific activities. This goal will be accomplished by exploring the Marius Hills area by following the path a nearby sinuous rille. The surroundings of the Marius Hills Pit contain a plethora of volcanic features of unknown origin, making it an ideal site for human scientific activities.⁹ This mission will study the rille and neighboring features including a crater and a lava dome. Preliminary examinations of these features using multi-spectral stereoscopic imaging will further characterize the volcanic geology of Marius Hills and identify further sites of intrigue for future scientific investigations.

The third and final science objective stemming from the second goal is identifying the characteristics and formation of regolith in lunar mare to better understand the significance and effects of regolith on terrestrial planetary bodies. When bedrock is altered into regolith through micrometeorite impacts and other weathering factors, the regolith obscures geologic features on the Moon's surface.

⁹Robinson, 21.

https://doi.org/10.17226/26522.

⁴Ibid, 97.

⁵James W. Head, Lionel Wilson, "Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of secondary crusts.," Geochimica et Cosmochimica Acta 56, no. 6 (1992): 2155. https://doi.org/10.1016/0016-7037(92)90183-J.

⁶I. A. Nesnas, et al,"Moon Diver: A Discovery Mission Concept for Understanding the History of Secondary Crusts through the Exploration of a Lunar Mare Pit," IEEE Aerospace Conference, Big Sky, MT, USA (2019): 5, https://doi.org/10.1109/AERO.2019.8741788.

⁷M.S. Robinson, J.W. Ashley, A.K. Boyd, R.V. Wagner, E.J. Speyerer, B. Ray Hawke, H. Hiesinger, C.H. van der Bogert, "Confirmation of sublunarean voids and thin layering in mare deposits," Planetary and Space Science 69, no. 1 (2012): 23, https://doi.org/10.1016/j.pss.2012.05.008.

⁸Grant Heiken, David Vaniman, and Bevan M. French, eds, "Lunar sourcebook: A user's guide to the Moon," no. 1259, Cup Archive (1991): 186.

Understanding the properties of regolith is critical for better interpreting images taken from space and how representative they are of actual surface features, which will, in turn, make site studies more accurate in preparation for human activities on the Moon.¹⁰ Due to its fine particle size, regolith is also one of the primary surface hazards on the Moon, so seeking to understand its formation and physical properties is critical in preparing for long-term lunar habitation. This mission will gather data on the transition between bedrock and regolith by looking at the layers in the sides of the pit and measuring grain size, chemical composition, and lithology.

In support of science objectives, seven instruments have been chosen and distributed between the DORA and BOOTS rover systems. All subsurface measurements, taken during descent and upon arrival at the base of the Marius Hills Pit will be performed by the instruments on DORA. DORA will host five of the seven instruments planned for the DORA Explorer mission. The DORA rover instrument payload contains an alpha particle x-ray spectrometer, a stereoscopic multipurpose imager, sensors for temperature and radiation, and a LiDAR. While DORA traverses the interior of the MHP, BOOTS will probe the surface and subsurface structure of the area surrounding the pit. The BOOTS rover system will deploy two scientific instruments of the seven selected for the mission, a ground penetrating radar for mapping of structural characteristics and a stereoscopic camera for quantifying topographic features.

¹⁰Nesnas, 5.