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1 Mission Overview

1.1 Mission Statement

The DORA Explorer Mission presents a comprehensive plan to assess the suitability of the Marius
Hills Pit (MHP) for long-term human habitation and advance understanding of the Moon’s volcanic
past and evolution. The mission will provide valuable data that will inform future manned missions
to the Marius Hills by investigating the physical structure and integrity, thermal stability, radiation
shielding capabilities, and the available in-situ resources of the MHP and potential lava tube structure
beneath the pit. The DORA Explorer Mission will study MHP’s exposed regolith flood basalt layersto
obtain key insights into the Moon’s volcanic history and surface processes, advancing understanding of
lunar geology and the evolution of rocky bodies. Finally, the mission will explore along the edge of a
nearby sinuous rille all the way to the rille source 25km away. It will analyze the morphology of the rille
and image nearby sites of interest include craters and lava domes with the purpose of characterizing
available surface science for future astronauts and studying lunar rilles.

The DORA Explorer Mission consists of two robotic probes: the rover BOOTS (Base Operational
Observation Terrain Surveyor) and the pit explorer DORA (Deep Operation Reconnaissance Agent).
BOOTS is the parent rover, whose task is to traverse the lunar surface to arrive at the pit, supply
power and communication to DORA, and eventually survey the surface surroundings of the pit. The
child craft, DORA, will descend into the pit cave to collect data on the internal structure of the
pit and lava tube, measure radiation levels and temperatures, and identify in-situ resources within
the lava tube. It will also measure and characterize exposed flood basalt and regolith layers on the
side of the pit opening. Aboard DORA are the the Mars Hand Lens Instrument (MAHLI), the
Alpha Particle X-Ray Spectrometer (APXS), GoldenEye 3D Flash LiDAR (GEF-LiDAR), Radiation
Assessment Detector (RAD), and Cernox® Cryogenic Thermometer (CCT). BOOTS has two scientific
instruments: Miniature Ground Penetrating Radar (MGPR) and MastCam-Z.

The DORA explorer mission is critical not only for determining the viability of future human habi-
tation in lunar pit caves but also for expanding scientific knowledge of the Moon’s geology and evolution
to provide further context and background for the future scientific activities of lunar astronauts.

1.2 Science Traceability Matrix

Tables 32a and 32b, the Science Traceability Matrix, outlines the science goals, objectives, and mea-
surements of this mission. The science goals of this mission stem from two customer-provided goals.
The first goal, a goal of the Lunar Exploration Analysis Group, is to “provide safe and enduring habi-
tation systems to protect individuals, equipment, and associated infrastructure” on the Moon.! The
lunar environment poses numerous challenges to sustained human habitation, including stark temper-
ature variations, high levels of radiation, and micrometeorites. Lunar pit caves could be ideal shelters
for astronauts and act as long-term bases of operations.? The first goal of this mission is to characterize
a pit cave’s merit to provide safe and enduring habitation systems. Two objectives are derived from
this goal. The first is to characterize the depth, terrain variation, ease of access, structural integrity,
temperature, and radiation levels within lunar pits/caves to determine the viability of human habi-
tation. Each of these parameters will be measured as indicators of merit for habitation. The second
objective derived from the goal of providing enduring habitation systems is to characterize in-situ
resources and materials inside selected lunar caves. In-situ resources are critical for NASA’s plans of
continuous lunar habitation, as using these resources eliminates dependence on Earth for resupplies.
As part of this objective, the mission will analyze regolith composition and volatile distribution in the
pit and on the surface to constrain where astronauts could obtain fuel and oxygen.

The second top-level goal of this mission, a goal from Origins, Worlds, and Life: A Decadal Strategy
for Planetary Science, is to “develop precursor lunar robotic missions and define those scientific activi-
ties that astronauts will conduct on the Moon.”3

1“The Lunar Exploration Analysis Group (LEAG),” Lunar Exploration Analysis Group (LEAG) (2024),
https://www.lpi.usra.edu/leag/roadmap/.

2Tyler Hovarth, Paul O Hayne, and David A Paige, “Thermal and Illumination Environments of Lunar Pits and Caves:
Models and Observations from the Diviner Lunar Radiometer Experiment,” Geophysical Research Letters 49, no. 14
(2022), https://doi.org/10.1029/2022gl099710.

3National Academies of Sciences, Engineering, and Medicine, “Origins, Worlds, and Life: A Decadal Strategy for
Planetary Science and Astrobiology 2023-2032,” Washington, DC: The National Academies Press, (2023): 18,
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In accordance with this goal, the mission aims
to learn more about the history and features of
the lunar mare in order to provide more geo-
logic context and information to better plan fu-
ture human scientific activities. The first objec-
tive derived from this goal is thus to constrain
the flood history, effusion rates, and composition
of basaltic lava flows lunar mare. This objec-
tive aligns with the fifth priority science ques-
tion of the Decadal Survey: “Q5. Solid-body
interiors and surfaces. How do the interiors of
solid bodies evolve, and how is this evolution
recorded in a body’s physical and chemical prop-
erties? How are solid surfaces shaped by sub-
surface, surface, and external processes?”* Un-
Figure 1: Images of Marius Hills Pit from different derstanding the history of basaltic lava flows in
angles from Robinson et al. (2012) lunar mare advances understanding of the transi-

tion from primary crust to secondary crust, which
is crucial for understanding how solid bodies and their surfaces evolve.> The Moon’s basaltic flow his-
tory is an ideal case study for investigations of secondary crust formation because of the Moon’s lack
of plate tectonics and relative geologic simplicity.

The timing and effusion rates of flood basalts on rocky bodies are still poorly understood. Under-
standing these factors is critical for interpreting volcanic features and constraining the secondary crust
formation process. Additionally, flood basalt events are linked with large-scale climate deviations, so
understanding how they work is of great importance on Earth.® The exposed layers of flood basalt on
the side of the favored mission destination, the Marius Hills Pit, provide an accessible way to study
historical basaltic flows without having to drill far below the surface. The mission will sample these
layers, seen in the lower two images of Figure 1,7 and collect data on chemical composition, mineralogy,
and morphology in order to constrain flow regime, flow velocity, and average composition, the latter
of which is critical for gaining a holistic view of the magma’s origin.® These data will advance under-
standing of the history and characteristics of flood basalts on the moon, thus providing information
about the Moon’s early and late volcanic history and how volcanism shapes rocky bodies.

The second science objective derived from the second science goal is to investigate the surroundings
of the pit to determine ideal human scientific activities. This goal will be accomplished by exploring
the Marius Hills area by following the path a nearby sinuous rille. The surroundings of the Marius
Hills Pit contain a plethora of volcanic features of unknown origin, making it an ideal site for human
scientific activities.® This mission will study the rille and neighboring features including a crater and
a lava dome. Preliminary examinations of these features using multi-spectral stereoscopic imaging will
further characterize the volcanic geology of Marius Hills and identify further sites of intrigue for future
scientific investigations.

The third and final science objective stemming from the second goal is identifying the charac-
teristics and formation of regolith in lunar mare to better understand the significance and effects of
regolith on terrestrial planetary bodies. When bedrock is altered into regolith through micrometeorite
impacts and other weathering factors, the regolith obscures geologic features on the Moon’s surface.

https://doi.org/10.17226 /26522.

41bid, 97.

5James W. Head, Lionel Wilson, “Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of
secondary crusts.,” Geochimica et Cosmochimica Acta 56, no. 6 (1992): 2155. https://doi.org/10.1016/0016-
7037(92)90183-J.

61. A. Nesnas, et al,”Moon Diver: A Discovery Mission Concept for Understanding the History of Secondary Crusts
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Understanding the properties of regolith is critical for better interpreting images taken from space
and how representative they are of actual surface features, which will, in turn, make site studies more
accurate in preparation for human activities on the Moon.'? Due to its fine particle size, regolith is also
one of the primary surface hazards on the Moon, so seeking to understand its formation and physical
properties is critical in preparing for long-term lunar habitation. This mission will gather data on the
transition between bedrock and regolith by looking at the layers in the sides of the pit and measuring
grain size, chemical composition, and lithology.

In support of science objectives, seven instruments have been chosen and distributed between the
DORA and BOOTS rover systems. All subsurface measurements, taken during descent and upon
arrival at the base of the Marius Hills Pit will be performed by the instruments on DORA. DORA
will host five of the seven instruments planned for the DORA Explorer mission. The DORA rover
instrument payload contains an alpha particle x-ray spectrometer, a stereoscopic multipurpose imager,
sensors for temperature and radiation, and a LIDAR. While DORA traverses the interior of the MHP,
BOOTS will probe the surface and subsurface structure of the area surrounding the pit. The BOOTS
rover system will deploy two scientific instruments of the seven selected for the mission, a ground
penetrating radar for mapping of structural characteristics and a stereoscopic camera for quantifying
topographic features.

10Nesnas, 5.
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